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We study finitely presented dynamical systems (which generalize Axiom A 
systems) and show that the notions of equilibrium states and Gibbs states (for 
H61der continuous functions) are equivalent. Our results extend those of Ruelle, 
Haydn, and others on Axiom A dynamical systems and statistical mechanics. 
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1. i N T R O D U C T I O N  

The equivalence between equilibrium states and translation-invariant 
Gibbs states for lattice spin systems is a central theorem of statistical 
mechanics. (15) This result has been translated, with the help of symbolic 
dynamics, to the field of hyperbolic dynamical systems, more precisely, 
Axiom A diffeomorphisms. (4'12'15) In this article, we generalize this equiva- 
lence to finitely presented systems, a wider class of dynamical systems 
recently introduced by Fried. (11) This class contains in particular pseudo- 
Anosov homeomorphisms tl~ and sofic shifts (5) and seems to be a natural 
generalization of Axiom A. Indeed, these systems possess very good sym- 
bolic dynamics and the methods from the thermodynamic formalism which 
apply to Axiom A diffeomorphisms carry over to this case. (For another 
generalization of Gibbs states see ref. 8.) 

Precise definitions and results are stated in Section 2 (where we also 
prove a weak closing lemma and a weak spectral decomposition theorem 
for finitely presented systems). In Sections 3 and 4, we prove respectively 
the two directions of the equivalence (Theorems 1 and 2). In order to do 
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this, we use the methods developed in previous papers (2'H'~2'~5) (for the 
sake of conciseness, we do not rewrite arguments which can be used 
verbatim, but give precise references). We recover (in Lemma 3.3) a known 
result (5) on sofic systems (a transitive sofic system with periodic points 
dense is intrinsically ergodic with support). 

2. M E A S U R E S  FOR FINITELY PRESENTED SYSTEMS 

We recall some of the theory of expansive homeomorphisms and 
Fried's (H) theory of finitely presented systems. Let .('2 be a compact 
topological space and f:  (2 ~ / 2  an expansive homeomorphism, i.e., there is 
a closed neighborhood V c f 2  x f2 of the diagonal Aa such that F = f x f :  
O x g2 --* O x .('2 satisfies N k ~  F kV= A~. 

This implies (H) (Lemma 2) that g2 is metrizable and that there exists 
a metric d for which f has an expansive constant e > 0: 

x , y ~ ,  x C y ~ 3 k 6 Y _ ,  d(fkx, f~y)>e (2.1) 

For sufficiently small 6 > 0 ,  this metric can be chosen ~H) such that it 
contracts (expands) the 6-stable (unstable) set uniformly, where those sets 
are defined for x ~/2 by 

W~( 6 ) = { y l d(fkx, fky ) << 0 Vk >>. O} 

W~(6) = { y td(fkx, f~y) <~ 6 Vk <. 0 } 

The contraction (expansion) property of the metric means that there 
exists ~ ( 0 ,  1) such that for all x, y, z ~ ,  y ~  W~(5), and z~ W~(6), one 
has 

d(fz, fy)<~2d(x, y), d ( f - ~ x , f  ~z)<~2d(x, z) (2.2) 

We shall take 6 < e/2. This implies that for any x, y s f2, the inter- 
section of W~(6) with W](6) consists of at most one point. If we set 

D6= {(x, y )~ t2  •  I W~(6) meets W~(6)} 

and define [.,  .]:  D6 ~ / 2  by [x, y]  e W~x(6)n Wy(6), then D6 is closed in 
~2xf2 and [-., .]  is continuous. We say that R c D  is a rectangle if 
R x R c D6 and JR, R]  c R. Then, for x ~ R we have the sets W;(x, R) = 
R n  W~(6) and W~(x, R ) = R n  W2(6), and R =  [W"~(x, R), W~(x, R)]. 

We now come to Fried's finitely presented dynamical systems. He has 
given four equivalent definitions of such systems. The expansive 
homeomorphism f satisfies the first one if f2 is a finite union of rectangles. 

To state the second definition, we must recall the notion of a Markov 
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partition for an expansive homeomorphism f : / 2  ~ 12: it is a finite cover 
of/2 by proper rectangles (R is proper if R = int R) with disjoint interiors, 
diameters less than 6, and such that, if x e i n t R ,  f x~ in tR '  (with 
R, R' E ~) ,  then 

f (W~(x,R))=R'  and f - l (W~(fx ,  R'))=R 

If (for any 6 >0 )  there exists a Markov partition for f,  then f satisfies 
Fried's second definition. 

For the third definition, we must introduce subshifts with finite symbol 
sets. Let 5 P be a finite set and consider the shift map a(Sk)=(Sk+~) on 
sequences (sk)e5 pZ. The sequence space 5 eZ endowed with the product 
topology is compact and metrizable and the shift is expansive. We say that 
a closed a-invariant subset L" c 5tz is a subshift of finite type (9) (SFT) (of 
order two) defined by a transition matrix M =  (m~), with mu~ {0, 1 } for all 
i, jeSP, if Z '=  {(s~)lm,~,k+l = 1, Vke 7/}. 

If the expansive homeomorphism f: O ~ 12 is a factor of a subshift of 
finite type _r by a surjective semiconjugacy ~r: Z'~12,  it then satisfies 
Fried's third definition. 

We shall not need Fried's fourth definition and are going to use below 
whichever characterization is suitable, but mostly the existence of a 
Markov partition, of the corresponding subshift of finite-type extension 
and properties (2.1) and (2.2). [-The relationship between the Markov 
partition and the subshift extension--i.e., the symbolic dynamics--is 
the same as in the Axiom A or Smale space setting, (~5) Section 7.5. Observe 
that if we endow the subshift _r with the metric ~((sk), (tk))= 2 n, where 
n=inf{]k[,  sk~tk} and 2 is the constant appearing in (2.2), then the 
projection ~ is Lipschitz.] In the sequel, N = 0 s ~ s , R ( s )  is a Markov 
partition for f of diameter at most 6 and ~z: s ~ 12 is the corresponding 
semiconjugacy between l a n d  an SFT (ref. 11, p. 496). 

Note that other authors have worked on expansive homeomorphisms 
with Markov partitions, in particular Dateyama (7) (see also the references 
therein). 

We now define equilibrium states and Gibbs states for a continuous 
weight function A: O--* N. Here, we only use the fact that the space 12 is 
metric, compact, and the map f : / 2  ~ / 2  a homeomorphism; these defini- 
tions hence apply to the shift spaces. 

An f-invariant Borel probability measure # on 12 is an equilibrium 
state (2~ for A (and the dynamical system f )  if it realizes the following 
supremum: 

. ;o ) hi(#) + j A d/2 = sup (v)+ Adv 
-O v 
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In the above equality, v ranges in the set of all f-invariant Borel 
probability measures over 12 and h,(v) denotes the measure-theoretic 
entropy o f f  It is known that the set of equilibrium states for an expansive 
homeomorphism is compact and nonempty (ref. 20, p. 224). Our results 
below show that if f is a topologically +-transitive, finitely presented 
system and A is H61der continuous with exponent 0e (0 ,  1) [note 
A ~ cg0(12)], then there is a unique equilibrium state for A. 

We now define the abstract notion of a Gibbs state. (4'15) We first need 
to know what a conjugating map is: for (9 a subset of 12, rp: (9-~ 12 is 
conjugating if 

lim d(fk(x) ,  f~(qox)) = 0 
I k l  ~ o e  

uniformly for xs(9.  The sets (9 and ~o((9) will always be assumed to be 
compact subsets of 12. If ~o: (9 ~ q)((9) is, moreover, a homeomorphism 
[for the induced metric on (9, q)((9)], one calls q~ a conjugating homeo- 
morphism. 

We shall also say that x, ye12 are conjugate if limlkl~o o 
d(fk(x) ,  f k ( y ) )  = O. 

Suppose now that A is an element of cg0(12); we then say that a Borel 
probability measure/~ on 12 is a Gibbs state for A [and (f, 12)] if, for all 
conjugating homeomorphisms q~: (9 --* ~0((9), one has ~o*(g.vle) =#lo(e) ,  
where 

g ( x ) = g A ( x ) = e x p  ~ [ A o f k o q o ( x ) - A o f k ( x ) ]  
k e Z  

We have slightly modified the usual (Is) definition of Gibbs states by 
taking for (9 a compact subset instead of asking for an open subset 
(observe that in the subshift of finite-type setting, the natural sets for (9 are 
the open and closed cylinders). 

In the Smale space or Axiom A setting, an equilibrium state for 
A E~~ is a Gibbs state for A (ref. 15, Section 7.18). Conversely, Haydn 
has proved (12) that a Gibbs state for A is invariant under some iterate fP 
of the map and is an equilibrium state for Z~-~  A ofk (in particular, i f f  
is topologically mixing--see ref. 15 for a definition--then p = 1 ). We obtain 
the same results: 

T h e o r e m  1. Let f be a finitely presented system on 12 and 
A E cs Every equilibrium state # for A is a Gibbs state for A. 

T h e o r e m  2. Let f be a finitely presented system on 12 and 
A ~cg0(12). For every Gibbs state ~ for A, there exists an integer p e N 
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such that # is invariant under fP and is an equilibrium state for Ap = 
ZP2o 1 A of~ and (fP, if2). In particular: 

(1) If f is topologically +-transitive, every f-invariant Gibbs state/t  
for A is an equilibrium state for A. 

(2) If f is topologically mixing, every Gibbs state # for A is an 
equilibrium state for A. 

The main difficulties encountered in finitely presented systems are due 
to the absence of a spectral decomposition theorem and the absence of a 
shadowing lemma (for instance, Wal'ters (19) shows that the only subshifts 
which have the shadowing property are the subshifts of finite type; also, as 
noted in Dateyama, (7) pseudo-Anosov maps do not have the shadowing 
property). However, we have the following "weak closing lemma": 

k o m m a  2.1. L e t f b e  finitely presented. The set Rec(f)  of recurrent 
points for f is a subset of the closure Per( f )  of the set of periodic points. 

Proof. By definition, x ~ 0 is recurrent if x ~ co(x), where the co-limit 
set of x, co(x), is the set of all limit points of the sequence fk(x),  k~> 0. Let 
e and 2 be as in (2.1), (2.2), and let 0 < f l < e / 2 .  Let x s R e c ( f ) .  We shall 
construct a sequence of periodic points converging to x. Let 0 < 6 < 
f l - ( 1 - 2 )  (this will be explained below). We shall need the constant 
r/= r/(X, 3) defined by 

tl = sup{~>~0l {(x, y ) e O x O t d ( x ,  y ) < ~ }  =D6} (2.3) 

(Note that t /> 0 because O is a finite union of rectangles.) Pick M so 
large that 2 M. 6 < ~//2 and choose 0 < e < t//2. Since x is recurrent, there 
exists n>~M such that d(f fx ,  x ) < e .  We construct an e-pseudo-orbit 

X ov ( j)j= _~ by setting 

xy=fk(x )  for j = k ( m o d n ) ,  O<~k<n 

[Recall that a sequence (Yk) is an e-pseudo-orbit if d(fyk, Yk+l )<e  
for all k.] For this very special pseudo-orbit, we now show that the usual 
shadowing construction applies (ref. 2, Proposition 3.6) to obtain a point 
which fl-shadows it. In fact, it suffices to find x Cr") which fl-shadows 
(Xk)2'_'o for every r ~ .  (Because then X + - ( r ' n ) : = f - [ ( r ' n ) / Z J x  ( r ' n )  will 
fi-shadow (Xk)~'2~r+2)~23 and the limit point z of the sequence x -+(~") for 

X ov r ~  oo clearly fl-shadows ( k)k= - ~ ' )  
So let r ~> 1. We define x2 for k = 1,..., r -n  recursively by 

~ XrO = X 0 -~- X 
t u f s (xk  + ~ e W~(fxk) n W~(xk + ~) 
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We have to check that the intersection is not empty. For 0~<k < n - 1 ,  
, f ~ + l x  Let us there is no problem, since we clearly have Xk+~=Xk+~= ~. 

look at the first special case, k + 1 = n: 

Xtn ~ m u 6 ( f X t n  1)O m s f ( x n )  = W ~ ( f " x o ) C ~  W ~ ( x o )  

This point clearly exists because d(f"x~, x0) < ~ < t//2. If r >~ 2, we look at 
the next sequences of n points. Again, we have 

x'k + 1 = fx'k, Vk for which k + 1 ~ 0 (mod n) 

[Because fx'k e W;(fx'D ~ W~(xk+ 1), since x'~e W;(x~) by induction and 
x~+ 1 = f ( x k )  for these values of k.] 

For the other values of k, i.e., those for which k +  1 = l .n  (l>~2), the 
intersection 

x;..~ w~(fx;.,, 1)~ W;(xo) 

is not empty either, because by induction 

X t n / t f" l., 1----fx(l 1)-, and x(l 1).,~W~-(Xo) 

so that 

d( f "x i l -  1).n, Xo) < d(xo, fnXo) + d ( f f  Xo, f"x l l  1). ~) < c~ + 2"6 < t 7 

We now claim that the point x (rn) : = f  r'~X'r, n fl-shadows ~x v.n k J k = O "  

Indeed, if 0 ~< k ~< r .  n, 

d(fkx(r .,0, X~:) ~ d ( f kx  ~ ~ ,  x'k ) + d(x'k, xk) 

<. r~n d(fk-JxJ ' f k -J+lx~  1)+b 
j = k + l  

r . n  -- k (~ 

<~" F~ ;/+~<l_-~<fl 
j= l  

[Where we use xj E W;(fx'j 1) and the choice of 6 at the beginning of the 
proof.] But now, for z a limit point as described above and any k e Z, 

d(fkz,  k ,  .< f f z) ..~ d(fkz,  Xk) + d(xk, F + " Z )  

= d(fkz,  Xk) + d(xk + ,, f~+ nZ) 

<2fl<e 

and hence f n z  = z by expansivity. Since d(x, z) < fl, the proof is finished. | 
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Remark. After writing this "weak shadowing" argument, we came 
across ref. 7, and realized that the fact we could shadow our special 
or-pseudo-orbit was a particular case of what is there called the "special 
pseudo-orbit tracing property" (SPOTP):  indeed, Dateyama shows that 
SPOTP follows from the existence of a Markov partition. We shall also use 
the following result about nonwandering ~s~ points: 

Lemma 2.2. If f is a finitely presented system, B c f2, and A~ is the 
set of nonwandering points of the Markov shift extension, then B ~ n(Ax), 
if and only if B c Per(f ) .  

Proof. Assume first that B c  n(Az). We have to show B ~  P e r f .  If 
x e B, then by assumption x = n(s with 2 e Az. For  any neighborhood (9 
of x, n - l c  is a neighborhood of s and hence contains a periodic point .5 
[the equality A s =  Per(a) is well known in the SFT case and can be 
proved by using shadowing]. But then n ( p ) e  (9 is a periodic point. 

Suppose now that B ~ ]~er f .  Let x e B. By hypothesis, x = lira Pi, 
where Pi is a sequence of periodic points. But any/~,, s ~ -  lp~ is a periodic 
point [this is due to the fact that # n - l ( x ) ~ < ( # S e )  2 and that is shown 
exactly as in the Smale space case--see e.g., Theorem IV.9.6.e in ref. 14]. 
So, taking if necessary a subsequence of p,, 

x = lim p; = lim n(/~) = n lim(/~i) 

so lim/~i e n -  ix is the limit of a sequence of periodic points, hence non- 
wandering, i 

Applying Lemma 2.2 to Rec( f )  and using compactness of n(Az), we 
obtain: 

Corollary 2.3. Let f be a finitely presented system. We have the 
inclusions: 

(1) P e r ( f )  c Rec(f )  ~ Pe r ( f )  and hence Rec(f)  = Per(f ) .  

(2) R e c f c l r ( A z )  and hence Rec( f )cTr(As) .  

In particular, if A denotes the nonwandering set o f f  we have 

Rec(f )  = Pe r ( f )  c 7z(Az) ~ A 

However, we have neither been able to deduce from the definition of a 
finitely presented system the equality A =re(As), or, equivalently, the 
"strong closing lemma" A = Per( f ) ,  nor found an example where they do 
not hold. These equalities are always satisfied in Smale spaces (Anosov 
closing lemma) and for pseudo-Anosov homeomorphisms (because they 
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are topologically mixing--since the associated Markov shift is Bernoulli-- 
and because of Lemma 2.4 below). This point should be clarified. 2 

We end this section with a weak spectral decomposition theorem. We 
frst  introduce the set K = U k~ ~ f k ( ~ R )  . [-Note that z -1  is uniquely defined 
on the residual set t2\K; see ref. 11, p. 496. One also easily proves 
A\rc(Az)  ~ K.] 

k e m m a  2.4. Let f be a finitely presented system. There is a finite 
compact cover of Rec( f )  by f-invariant sets, R e c ( f ) c  U~=IAi c A, such 
that A i ~ A s ~ K if i # j, and f ]a, is topologically +-transitive. Moreover, 

A d Ais, where the A~,j may only each A~ has a finite compact cover g--- U j'= 1 , 
meet in K, are fa,  invariant, cyclically permuted by f, and such that fd, [A,~ 
is topologically mixing. 

Proof. The spectral decomposition theorem for subshifts of finite 
type (ref. 9, Proposition 17.11) yields disjoint topologically +-transitive 
subshifts of finite type A~ ..... 2]~ such that A s  = U A~. The .~i are called 
basic sets. Moreover, each A~ can be decomposed in d~ >~ 1 disjoint compact 
sets .,~,j which are cyclically permuted by a and such that aa'l~,.~ is 
topologically mixing. 

Clearly, f leaves the compact set A~=zt(.~i) invariant and f lA ,  is 
topologically +-transitive (for an example of nonempty intersections, see 
ref. 5, Remark 4, Section 5). Moreover, Corollary 2.3 tells us that Rec( f )  
7z(Az). Finally, the compact sets zt(j~.s) are f~' invariant and fd, is 
mixing on them (for the nonempty intersections, see ref. 5, Remark 3, 
Section 5). | 

3. EQUILIBRIUM STATES ARE GIBBS STATES 

In the Smale space case, Theorem 1 is the "easy" direction of the 
equivalence. We are going to use the available symbolic dynamics to follow 
the method outlined in ref. 15. Since our hypotheses are weaker, we first 
check that some key results remain true: the fact that the boundary of the 
Markov partition can be divided into a stable and an unstable boundary 
and the isomorphism between the abstract dynamical systems (s a,/~) and 
(f2, f, ~t), where/~ is the unique equilibrium state for a given A e ~~ and 
# = ~*(/~). This is the content of the next two lemmas and their corollaries. 

Z This situation can be compared with the Axiom A case: Dankner  (6~ has constructed 
an example of a diffeomorphism g in E3 with hyperbolic nonwandering set A in which 
the periodic points are not  dense, i.e., g satisfies the first but not  the second condition of 
Axiom A. We do not know if the expansive homeomorphism glA is finitely presented, 
Kura ta  (13) has a simpler example with the same properties on a four-dimensional manifold. 
Another idea would be to try to construct a sofic shift counterexample. 
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Lemma 3.1. Let R c~2 be any closed rectangle. As a subset of s 
R has boundary OR = ~?"R w c~'R, where 

3~R = {x~RIx$int W~(x, R)} 

3SR= {x~Rlxr W~(x, R)} 

and the interiors are taken in W~((5), respectively W~(6). 

Proof. (This lemma should be compared with Lemma 3.11 of ref. 2, 
although we are not allowed to use the product [-., �9 ] as freely.) One inclu- 
sion is easy: if x lies in the interior of R, then x~ in t  W~(x,R) and 
x ~ int WS~(x, R). For the other direction, suppose x ~ OR and use Fried's 
observation (ref. 11, p. 497) that this implies that x~ R and there exists a 
sequence xk ~ x (k-~ oo) with xk ~ R and such that either xk ~ W~(3), but 
then x r  W~(x, R); or xk~ W~(6), and then x r  W~(x, R). | 

We use the notation 3s~ = Ut~jc?SR(t), c~Y2 = U,~so~R(t). 
Lemma 3.1 yields: 

Corollary 3.2. f(3+~) c ~?~ a n d f - l ~ ? ~  c c~"~. 

Proof. Use Lemma 3.1 and follow Bowen's proof (ref. 2, Lemma 3.14 
and Proposition 3.15), which only employs the existence of canonical coor- 
dinates inside rectangles. I 

The next lemma is essentially the analogue of Ruelle's Theorem 7.9. ~ 

Lemrna  3.3. Assume that f i s  topologically +-transitive. 

(1) ~r is topologically +-transitive. If, moreover, f is topologically 
mixing, then a is topologically mixing. 

(2) IfA~Cd(f2), then P(f,A)=P(~,Ao~z). 
(3) If A ~ cd~ then there exists a unique equilibrium state ~ for A 

and # = ~*(fi), where fi is the unique equilibrium state for A o ~. 

(4) Let /t, fi be the measures defined in (3). The map re: (S,/2) 
(g2,#) is an isomorphism of dynamical systems. [In particular, 
/2(n - 1K) = 0. ] 

(5) The set of periodic points f o r f i s  dense in f2. 

(6) If f is topologically mixing, the set of points conjugate to any 
x ~ f2 is dense in f2. 

Proof. For (1) the proof of Bowen (ref. 2, Proposition 3.19) is valid. 
For the assertions (2)-(4), remember that if we put the right metrics 3 on 
2;" and d on f2, then n is Lipschitz [in particular, A ~ (g0(Q) implies A o ~ c 
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cg~ We can hence use Corollary 3.2 to proceed exactly as in ref. 15 
(Sections 7.7-7.9). For (5), use (1) and Lemma 2.4. The last claim is true 
because it holds in the shift space and one can use (1) (see ref. 15, 
7.16.b). | 

Flomark. Lemma 3.3(1) combined with Lemma2.2 shows that the 
equality P e r ( f ) =  A is true in particular i f f  is topologically +-transitive. 

A consequence of the lemma, which permits us to suppose A = 0, is: 

C o r o l l a r y  3.4. Assume f is topologically +-transitive. If A, B e  
cg0(12), denote by /~A and #A+B the equilibrium states of Lemma 3.3 for A, 
respectively A + B, and write 

One has 

(exp  -' ) Z n ,  m = ]AA E B o f k  , 
= n  

) ,  Zn m . exp B o f  k 
m ~ o o  

n < m e ~  

" ~ A  = [ A A + B  

where the convergence is meant in the sense of the vague topology. 

Proof. Lemma 2.4 allows us to restrict ourselves to the topologically 
mixing case. We can hence follow ref. 15 (Corollary 7.13.b). | 

To prove Theorem 1, we must understand conjugating homeo- 
morphisms better. In the Smale space (or SFT) setting, the situation is 
described in refs. 4 and 15. Unfortunately, an apparently crucial point 
[condition (C) in ref. 16: for every pair of conjugate points there is a con- 
jugating homeomorphism defined on an open neighborhood of the first and 
sending the first to the second] does not seem true in our setting (because 
we are not allowed to use [.,  �9 ] freely). But some results apply directly: 

L e m m a  3.5. 

(1) Two points x, ye12  are conjugate if and only if there is N e  N 
such that d(fkx,  fky)<~ e for all ]k[ > N. 

(2) A mapping q~: (9 --. 12 is conjugating if and only if there is N e  N 
such that d(fkx,  f~(tpx))<<, e for all rkl > N and x e (9. 

(3) Let x e (9 c 12 and q~: (9 ~ 12 be a conjugating map, continuous at 
x. Then there is a neighborhood (9' of x such that q) I ~,~ o is injective and 
continuous. 

(4) If two mappings ~o 1 and ~0~ defined on (9 are conjugating, con- 
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tinuous at x e (9, and such that q~1(x) = (p2(x), then there is a neighborhood 
(9' o f x  such that ~01 ] (p ,~ (9  ~--- ~ 0 2 [ C , c ~ ( 9 ,  

Proof. The proofs are in ref. 4: points 3.3-3.6. Note that if the sets (9 
of (3), (4) are neighborhoods of x, then (9 c~ (9' is also a neighborhood 
ofx. | 

Lemma 3.5 allows us to speak of germs of conjugating homeo- 
morphisms at a point. As already mentioned, the difference with refs. 4, 12, 
and 15 is that such a germ is not associated to any pair of conjugate points. 
However, we are going to prove that the set of "bad" points is negligible 
in the measure-theoretic sense. In order to do this, we introduce yet 
another notation. For  x e s we define two symbolic sequences in 5P~: 

(1) The first one is simply sk(x)=(~z lX)k [ i .e . , fk (x)e in tR(sk)  for 
k~Z]. 

(2) For  the second, choose for each k E Z one of the rectangles R of 
the Markov partition [R C R(Sk)] which minimize the (strictly positive) 
distance d(fkx,  R), and set s'k(x) = s, where R = R(s). 

The "bad" set (which is essentially the set Y of Theorem 1 in ref. 17) 
is 

Y:= {xes lim d(fkx,  O~)=Oor  lim d(fkx,  0 ~ ) = 0 }  

= K u  {x e (2\KI lim d(f~x, R(s'k(x))) = 0 

or lim d(fkx,  R(s'k(X)))=O} 
k ~  --cx3 

Y is a closed subset of f~, it contains K, and its complement is 

Q \  Y= {x e ~ \ K I  I t /=  q(x) > 0 such that VN~ N, tn e N, n/> N, 

with d( fnx,  R ( s'=( x ) ) ) > 17 and d( f "x, R ( s , , ( x  ) ) ) > ~ } 

We now prove: 

(3.1) 

Lemrna 3.6. The complement of Y \ a ~  is of total measure, i.e., if # 
is an f-invariant Borel probability measure, then/1(Y\c~N) = 0. 

Proof. We can write Y\ON as Y+ ~ Y-,  where 

Y+ = {xeQ\c?~  I lim d(fkx,  c ~ ) = 0 }  

Y = { x e g ? \ c ~ ]  lim d(fkx,  O~)=O} 
k ~  --oo 
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It clearly suffices to study Y+. First note that Y+ is a subset of the set 
of nonrecurrent points {x ~ f21x q~ co(x) }. This comes from the observation 
that, for y~  Y+, co(y)c  ON, but yq~0N. The proof now follows from 
Poincar6's recurrence theorem (ref. 14, Theorem 1.2.3), which tells us that 
#({x I x q~ co(x) }) -- 0, if # is a Borel f-invariant probability measure. | 

Remarks. 1. If # is an equilibrium state for some A e cg~ we 
know #(0N) ~</~(K) = 0 and Lemma 3.6 implies #(Y) = 0. 

2. If x e Y and y e f2 are conjugate, then y is also in Y. [Consider the 
case y~  Y+ w0N. This means that l i m k ~  d(fkx, 0 N ) = 0 .  Since by 
assumption l i m k ~  d(fkx, f~y)=0, we have limk~oo d(Fy, 0 N ) = 0 ,  i.e., 
y~  Y+ w0N.]  

In the sequel, we shall use the following equivalence relations: two 
Markov rectangles R(s) and R(t) are related if R(s)c~R(t)#Z; two 
sequences (sk) and (tk) in Z are related if R(sk) and R(tk) are related for 
all k e  Z. Bowen has observed (ref. 3, p. 13) that ~(s~)= rr(tk) if and only if 
(sk) and (tk) are related. 

We now construct conjugating homeomorphisms for conjugate points 
outside Y: 

kemma 3.7. Suppose xeg2\Y, y~f~ are conjugate. 

(1) There exists a compact neighborhood (9 of x and a conjugating 
homeomorphism cp: (9 ---, cp((9) such that cp(x) = y. 

(2) ~ ix and 7c ~y are conjugate in Z. 

Proof. (1) Let q(x) be as in (3.1). Since x and y are conjugate, 
there exists N such that d(f~x, fky)< r/(x)/2 for all Ik]/> N. Then, since x 
is in ~ \  Y, there exists n e N, n ~> N such that 

i f ( x )  e int R(s,) and d(ff(x), OR(s,)) > tl(x) 
f -n(x) e int R(s_,) and d(f  -'(x), OR(s,))  > q(x) 

which implies i f ( y )  e int R(s,) and f - " (y )  ~ int R(s_,). 
Thus, since y CON by Remark 2 above, we can now use Ruelte's 

construction (ref. 15, Section 7.15), which we repeat here for the reader's 
convenience. 

Denote by Ry the rectangle of the Markov partition such that 
y e int Ry. Since the Markov partition is finite, there exists a neighborhood 
(9 of x such that [x, z] and [z, x]  are well defined for z in (9. By choosing 
(9 sufficiently small, we can assume t h a t f f [ z ,  x]  a n d f - ~ [ x ,  z] lie in R(s~), 
respectively R(s ~), for z e (9. Hence, we can construct 

z l=[ f~[z , x ] , f "y] ,  z2=[ f -~y , f -~[x , z ] ]  
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and, replacing if necessary (9 by a smaller neighborhood, assume that zl,  z2 
are in a neighborhood of f "y, respectively f -ny ,  small enough to ensure 
that f -nz l  ~ Ry and fnz2 ~ Ry. Hence, for z e (9, we can set 

q~(z) := [ f  "zl, f"z2] = I f  n[f~[z, x], f"y], f " [ f  -"y, f -n[x ,  z ] ] ]  

Clearly, q~ is continuous at x and is a conjugating map in (9. We now 
use Capocaccia's methods to show that a suitable restriction of (0 is a 
homeomorphism: by Lemma 3.5(3), we can suppose that ~p is injective and 
continuous; since y q~ Y, we can construct an injective continuous conjugating 
map q~': (9 '~  (0'(9' sending y to x ((9' is a suitable neighborhood of y). 
But now q~ o ~p' and cp'o ~0 are continuous and conjugating maps fixing y, 
respectively x, and defined in neighborhoods of these points: uniqueness 
[Lemma 3.5(4)] allows us to conclude that they are equal to the identity 
map on suitable neighborhoods of x, y. 

(2) Since x and y are conjugate, denoting ( t k )=n  l(y) and 
(Sk) = n I(X), the rectangles R(sk) and R(tk) are related for [kl ~> N IN  as 
in (1)] and also sn = t,, s_ ,  = t_ ,  for some n i> N. Hence, 

X=TC(...,S n_l,S_,,,S n+l,...,SO,...,Sn, Sn+l,... ) 

=~(  .... t _ ,  1, t  ~,S--n+I,...,S0 ..... t~,tn+l,...) 

But  since x r K, we must have sk = tk, for all Ikl i> n, and this exactly 
means that ~ ix and n ly are conjugate. | 

Now that we understand better the finitely presented situation, we are 
going to follow ref. 15, Theorem 7.17 in the next two lemmas to prove 
Theorem 1. First, we show that the equilibrium state for A = 0 (i.e., the 
measure which maximizes entropy) has a local product structure: 

kemma 3.8. Suppose f is topologically +-transitive and let # be 
the unique probability measure which maximizes entropy. Then, for each 
x s Q, the set 

[ W~(6), W~(6)] = { [y,  z] ](y, z) ~ (W;(6) • WS(c~)) n D6} 

is a neighborhood of x. 
In this neighborhood, there is a local product structure for #, i.e., there 

are positive measures /~  on W~(6) and ~t~ on W~(6) such that 

[. ,  -]* (#~x #~) ]~6~•  w~(6)~D~=#IE~(~).~6)j 

ProoL The first observation comes from the fact that there is a 
neighborhood of x composed of finitely many rectangles, R~,..., R, ,  say. 



252 Baladi  

Decomposing W~(6) -= Uj w~(6, R~) and WS(6) --= Uj w~(6, R/) and 
remembering that EWe(6, R;), WS ( 6, Rj) ] = R  j, we obtain the assertion. 

For the rest, we restrict ourselves for simplicity to the unstable set case 
and use Sinai's ideas (18) as presented in ref. 17. Rereading the proof of 
Theorem 1 in ref. 17, we notice that the only point which is delicate in the 
absence of canonical coordinates is the use of the "projection along 
unstable manifolds" defined in that paper. Fortunately, it suffices for our 
purpose to consider these projections 

u ,  u u py. w;(~)--, w,,(6) 

when y, y ' s  W"~(6), d(y, y') < c~, e > 0 sufficiently small (because we only 
use the projections to show that "the definition of #:~ makes sense" and not 
to compare #~ and #:~, for any x close to x ' - - in  particular, we do not claim 
Ruelle and Sullivan's Theorem lb is true in our setting). However, in this 
case p], is simply the identity map and Lemma 3.8 follows from the proof 
in ref. 17. (For more details, see the Appendix in ref. 1.) I 

The local product structure allows us to prove Theorem ! in the case 
A = 0 (this is the method used in ref. 15, 7.17.b): 

I_emma 3.9. Suppose f is topologically +-transitive and let # be 
the unique probability measure which maximizes entropy. Then, if 
~o:(9--,q9((9) is a conjugating homeomorphism, the image by q) of # 
restricted to (9 is # restricted to q~((9): 

q~*(#l~)=#l~ 
Proos One can clearly assume that (9 is contained in a smali 

neighborhood of x. Let y denote p(x) and apply Lemma 3.8 to x. 
It clearly suffices to show that, taking if necessary a smaller value of 

6 > 0 ,  

{ ~,~ L ~ ~ ~ ~(~(6))) = #~ t o(~ ~ ~ ( a ) )  ( 3 .2 )  
~;o*(#~1~ '(~(6/~)=#~1~(~ ~(6)1 

The details of the proof can be found in the Appendix of ref. 1. | 

Proof of Theorem I. If # is an equilibrium state for A, # is 
f-invariant, and by Poincar6's recurrence theorem, its support is a subset of 
R e c ( f ) c n ( A z ) .  (Use Corollary2.3.) We then use the decomposition 
in basic sets A~ for f given by Lemma 2.4. Note that if xeA~ and x r  Y, 
any point y conjugate to x is in the same basic set A~. [Because, by 
Lemma 3.7(2), ~ - l ( x ) E  A~ and n ly are conjugate and the stated result is 
true for SFT, i.e., 7z-~y must lie in ,~i. See also ref. 15, 7.16.b.] 
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So, by Lemma 3.6, it suffices to prove the theorem for a topologically 
+-transitive f." f2--.s Lemma 3.9 tells us that the statement holds for 
A = 0 and Corollary 3.4 shows that it is true for any A e cg~ | 

4. GIBBS STATES ARE E Q U I L I B R I U M  STATES 

To prove Theorem 2, we are going to follow some of Haydn's (12~ ideas. 
As in the preceding section, let us start with some necessary results from 
the Axiom A case which obviously remain true for finitely presented 
systems. 

Lemma 4.1. 

(1) For  6 > 0, let M~ be the greatest integer such that any y, y'  in g2 
with d(y, y') < c5 satisfy d(fky, fky , )  < e, V ]kt <<. M6. Then M6 --, oo as 
6--*0. 

(2) For M e  N, let 6M be the smallest number such that any y, y '  in 
f2 with d(fky, fky , )  < e, V [kl <<. M, satisfy d(y, y') < gM. Then ~M -~ 0 as 
M--* m. 

(3) Let ~ c Z  be a compact set and 0:g--,O(g) be a uniformly 
continuous conjugating homeomorphism for a. Then there exist a finite 
decomposition g = Uk (~k and conjugating homeomorphisms cpk: (9 k := 
rr(gk) ---, ~0k((gk) which are projections of 0 [~ (i.e., q)k ~ ~z --- ~ o ~b on (~k, for 
all k). The sets Ck can be assumed to be cylinders and the sets (9 k are hence 
closed. 

(4) If/7 is a Gibbs state for ~ e cg~ then f i (Az)= 1, where Az  
denotes the nonwandering set for a. 

ProoL The first two assertions are Lemma 3 in ref. 12 or points 3.1 
and 3.2 in ref. 4. The first one comes from the fact that f k  is uniformly 
continuous for all k e Z, and the second is due to expansiveness o f f  and 
compactness of s The third claim is Lemma 4 in ref. 12 and, with the help 
of (1) and (2), this proof is valid in our case. The last assertion is Haydn's 
Lemma 9. (12) | 

We now want to follow Haydn's steps and prove that #(K) = 0 if # is 
a Gibbs state. 

Lemma 4.2. Let x E s be such that ~ ix c A x. Then there exist: a 
finite closed cover 0 7x-1 (gt of a neighborhood C of x such that x e (~ for 
each l; and conjugating homeomorphisms (p/C~ ~ ~0t((gt) with opt(x)~ K for 
each L 
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Proof. Let {ff,}~'x 1 :=rr l ( x ) c A z .  Fix :?l in this set and let Ati, s be 
the mixing compact set of the spectral decomposition of o which contains 
2l (see Lemma 2.4). Let C~, be the set of points in X conjugate to 2t- Since 
od'[~, is topologically mixing, C~ is dense in ~li, j (ref. 15, Proposi- 
tion 7.16.b). Now the set B~ := r~- l ( f2 \K)nA~s is open in AIj  and non- 
empty [we cannot have ~(A~.s) c K because of 'Lemma 3.3(4) and the fact 
that /1(Ali, j) ~ 0 for any equilibrium state/ i  on 22]. Hence, C~ c~ B~ is not 
empty: choose a point 37t in this intersection. [In particular, zt(371)~ K.] By 
construction, 2l and 37l are conjugate; we can hence find a compact 
neighborhood ~ of xt and a (uniformly continuous) conjugating 
homeomorphism ~ :  g / ~  Oz((~l) with ~1(2l)= )3 l (ref. 15, Section 7.15). 

We now apply Lemma 4.1(3) to 01, taking (91= C~,k, q)l := qol, k with k 
chosen such that x e Cl,~. We finish by noting that the set (9 = U (9l is a 
neighborhood of x because it is of the type (9 = r~(U~ ~ ~_,(~)Cl), where each 
Cl is a cylinder containing 2l. Indeed, if N is the maximal length of these 
cylinders, (9 contains the set 

U : =  U R(so)n f - l R ( S l ) ~  fR( s 1) c~ "'" 
N 1 

(~I . /=  Nms3s)+l)= l 
fSx ~ R(sj) 

c~ f-NR(sN) ~ fNR(s u) 

which is clearly a neighborhood of x. [Let ~ > 0 be such that any y ~ Q 
with d(x, y) < ~ satisfies d(fSx, fsy) < inf+ (diam ~ ,  d(fJx, 0~)},  for all 
IJl ~< N, where inf + B := inf(B\{O}). Then B~(x), the open ball of radius 
and center x, is contained in U, since d(x, y ) <  ~ implies that fSy is in the 
same rectangle asf~x for IJl ~<N.] | 

The next lemma is an adaptation of ref. 12, Lemma 5: 

ke rnma  4.3. Let A ~ cg~163 and/~ be an f-invariant Gibbs state on 
f2. Then/~(K) = 0. 

Proof. We begin like Haydn and note that the proof can be reduced 
to showing # ( K * ) = 0 ,  where K* :---(']~>0f~3~N (the set 0 ~ 0 f ~ " ~ g  
would be treated similarly). In fact, using Poincar6's recurrence theorem 
and Lemma2.4, it suffices to consider the set K * ~  A, [where 

A~ c Rec(f )  is the union of the basic sets]. In particular, considering the 
finitely presented system f [ U A , ,  w e  may assume by Lemma3.3(1) that 
~t-~voA~cAz. Assume by contradiction that /~(K* c~Rec(f))  is strictly 
positive and use Haydn's observation that this implies, since K*c~ Rec(f )  
is compact, the existence of z e K* ~ Rec( f )  such that #(B~(z) c~ K*) > 0 
for all ~ > 0. 

We now apply Lemma 4.2, which gives us a finite closed cover U (9~ of 
B~(z) for some ~ > 0  and conjugating homeomorphisms ~o~: (9l--+q~((9l) 



Finitely Presented Dynamical Systems 255 

sending z to some wtCK. Since wtCK*, we can find t / > 0  such that 
B2,(wt) n K * =  ~ for all l and, taking if necessary a smaller value of ~, 
q)t(Bc(z) ~ (gt) c B,(wt). Fix l such that n(Br ~ ~ c~ K*) > 0 (this clearly 
exists). 

We can now finish the proof like Haydn: set D = qoz(Br ) n K* n (9~). 
Then # ( D ) >  0 because /~ is a Gibbs state. Since ~0t is conjugating, there 
exists N ~  such that d(fkq)l(y), fky)<q, for all y~B~(z)n(~ and all 
Pkl>~N. Hence, since K* is f-invariant, supx~Dd(fk(x),K*)<q for 
]k[ 7> N. But by construction, d(D, K*) > t/ and thus fk (D)  ~ D = ~ for all 
Ikl/> N. 

We have constructed a collection {fiN(D), j E  t~ } of pairwise disjoint 
sets which all have the same strictly positive measure (because // is 
f-invariant). But then the measure of their union diverges, a contra- 
diction. | 

C o r o l l a r y  4.4. Let A E cg~ and/~ be a Gibbs state on (2 for A. 
Then/~(K) = 0. 

ProoL Use Lemma 4.3 and follow Haydn (ref. 12, Proposition 6). II 

Proof of Theorem 2. Let # be a Gibbs state for A~<~~ By 
Corollary 4.4, n 1 is defined #-almost everywhere. Define a measure fi on 
Z by /2(U)=0 if U c n - I ( K )  and fi(U)=fi(Uc~n-1(12\K))=#(n(U)) for 
all other U. Using Lemma4.1(3), one sees that fi is a Gibbs state for 
A o n ~ cg~ 

We first consider the special cases (1) and (2): we know that an 
f-invariant Gibbs state for a topologically +-transitive SFT or an a priori 
not invariant Gibbs state for a mixing SFT is an equilibrium state (ref. 15, 
Corollary 5.6 and Proposition 5.20, or ref. 12, Corollary 13), so fi is an 
equilibrium state for Aon. We end the proof of the special cases by 
applying Lemma 3.3, which says t h a t / / =  n*/i is an equilibrium state for A. 

For  the general case, apply Lemma 4.1(4) and then use the decomposi- 
tion into mixing sets in the shift space (Lemma 2.4). Clearly, a normaliza- 
tion of fi[~,j is invariant under a d' and is an equilibrium state for 

d z - - I  ' k ~ k = o A o n o a  and (aa',Az, j) (see, e.g., the proofs of L e m m a l 2  and 
Theorem 2 in ref. 12). Hence, we obtain the assertion of the theorem by 
setting p to be the least common multiple of the d~, and applying again 
Lemma 3.3. | 
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